
MM90: A Scalable Parallel Implementation of thePenn State/NCAR Mesoscale Model (MM5)J. MichalakesMathematics and Computer Science Division, Argonne National LaboratoryArgonne, Illinois, U.S.A. 60439This paper describes MM90, a parallel regional weather model basedon the Penn State/NCAR MM5. Parallelization of �nite di�erencing,horizontal interpolation, and nesting on distributed-memory (message-passing) computers is handled transparently using the RSL library pack-age. Fortran90 modules, derived data types, dynamic memory allocation,pointers, and recursion are used, making the code modular,
exible, ex-tensible, and run-time con�gurable. The model can dynamically senseand correct load imbalances. The paper provides performance, scaling,and load-balancing data collected on the IBM SP2 computers at ArgonneNational Laboratory and NASA Ames Laboratory. Future work will ad-dress the impact of parallel modi�cations on existing modeling software;an approach using commercially available source translation software isdescribed.1 IntroductionRegional models of the earth's atmosphere provide high resolution forweather forecasts and climate predictions but require large amounts of com-puter power. The need to run larger and longer scenarios at higher resolu-tions with more sophisticated physics will continue to exceed capabilities ofnonscalable computer architectures. This paper describes a multiyear e�ortat Argonne National Laboratory to develop tools and techniques for imple-menting regional weather models on scalable, distributed-memory computers,sometimes called massively parallel processors (MPPs), and other distributed-memory computing environments, such as networks of workstations. The fo-cus of this e�ort has been the development of MM90, a parallel implementa-tion in Fortran90 of a well-known and widely used regional weather model,the Pennsylvania State University/National Center for Atmospheric ResearchMesoscale Model, MM5. This work addresses the dual and often con
ictingconcerns for good performance and maintainable software.Achieving good, scalable performance requires that the resources of theparallel machine be used e�ciently. Each processor operates on the data inPreprint submitted to Elsevier Preprint 19 May 1997

its local memory and exchanges data with other processors when operandsare not available locally. Communication, idle time from uneven workload orprocessor capability, and I/O costs must be addressed to give e�cient scaling(relative to perfect scaling, where execution time is inversely proportional tothe number of processors). Scaling in memory is also a consideration, sinceit allows the aggregate memory available on MPPs to be used to run verylarge problems. Parallelization is described in Section 2. Section 3 describesdynamic load balancing in MM90. Performance benchmark results are givenin Section 4.Software is an issue insofar as modi�cations segregate the parallel codefrom the o�cially maintained version of MM5. Although many details of theparallelization have been encapsulated within a parallel library, a troublesomeamount of parallel artifact remains. Thus, MM90 has evolved into a sepa-rate, nonstandard version of MM5. Section 5 describes e�ort now underwayto employ source translation technology to make virtually all modi�cations fordistributed-memory parallelism transparent. The result will be a true single-source expression of MM5 that provides good performance on diverse high-performance architectures.1.1 MM5, MPMM, and MM90The Penn State/NCAR model is a limited-area (as opposed to global)model of atmospheric systems over regions ranging from several thousandto several hundred kilometers. Originally developed in the late 1970s [1], themodel is now in its �fth generation, MM5 [3]. It is a primitive-equations modelemploying �nite di�erencing on an Arakawa-B grid for the computation of at-mospheric dynamics (advection and di�usion) under both hydrostatic andnonhydrostatic assumptions, both of which employ time splitting. In the hy-drostatic case, a split-explicit scheme is used to handle fast-moving gravitywaves without reducing the overall model time step. In the nonhydrostaticcase, which is fully compressible and permits sound waves, a split semi-implicitmethod is used. Vertical propagation of sound waves is treated implicitly, al-lowing the length of the split time step to be independent of vertical resolu-tion. Initial conditions and forcing for lateral boundaries come from externalsources: global atmospheric models and observations. MM5 allows multiplenested grids with two-way interaction between nest levels. Four-dimensionaldata assimilation (FDDA) is provided as an option for incorporating observa-tions during a run. The model is maintained in the public domain by NCAR forinternal use and by three-hundred groups at institutions worldwide for weatherforecasting, regional climate prediction, air-quality, and storm research. 1The Massively Parallel Mesoscale Model (MPMM) [2][8] was developedby Argonne researchers beginning in 1992 on the Intel Touchstone Delta com-1 The MM5 source code and other information are available fromhttp://www.mmm.ucar.edu/mm5. 2

Table 1MM5 versions and options supported in parallel MPMM and MM90 codesMM5v1 MPMM MM90 MM5v2Dynamics Hydrostatic � �Non-hydrostatic � � � �PBL Bulk � �Blackadar � � � �Burke-Thompson � � �Cumulus Grell � � � �Anthes-Kuo � � � �Kain-Fritsch �Fritsch-Chappel �Betts-Miller �Arakawa-Schubert �Radiation Simple � � � �Dudhia � � � �CCM2 �Moisture Warm rain � � � �Mixed phase � � � �Grauple (GSFC) �Grauple (Reisner) �FDDA Analysis � � �Observational � �puter (Caltech). Development has continued on the IBM SP2 at Argonne withports to other parallel systems: Intel Paragon, Cray T3D/E, Fujitsu AP1000,SGI Power Challenge, and networks of workstations. MM5 was parallelizedusing the Runtime System Library (RSL), a communication and portabilitylibrary that provides high-level communication, automatic two-dimensionalirregular domain decomposition, support for remapping for dynamic load bal-ancing, automatic local/global index translation, and distributed I/O [6]. Thelibrary is tailored to the needs of �nite-di�erence regular grid weather mod-els with multiple nests. It uses vendor-speci�c message-passing layers whenavailable (NX on the Paragon, MPL on the IBM SP2), and MPI on otherplatforms. RSL was developed at Argonne National Laboratory in conjunc-tion with MPMM and MM90. It is similar to packages developed by a numberof other groups [4][5][9].MPMM and its follow-on Fortran90 implementation, MM90, are function-ally equivalent in most respects to the 1995 release of MM5 (MM5v1). Theparallel model is strictly nonhydrostatic, although a separate hydrostatic ver-sion of MPPM has been implemented by Y. Kim at Iowa State. Since therelease of MM90, NCAR has released MM5 version 2 (MM5v2). Options inthe parallel code are listed in Table 1.MM90 uses new features in Fortran90 | dynamic memory allocation,modules, structures, pointers, and recursion | to make the model more
exi-3

Fig. 1. Pointwise decomposition of an irregularly shaped domain over 12 processorsusing RSL's built-in partitioner. The number of grid-points per processor di�ers byno more than 2.ble and run-time con�gurable. Building on this
exibility, MM90 includes ad-vanced features such as dynamic load balancing and irregularly shaped nests,which replace overlapping nested grids in the source model. MM90 is the fore-cast model component of the prototype Global Theater Weather Analysis andPrediction System (GTWAPS) at the U.S. Air Force Global Weather Central(AFGWC). MPMM is used on the Cray T3D at the U.S. EPA National En-vironmental Supercomputing Center (NESC) to provide meteorological inputfor air-quality modeling. MM90 and MPMM are also used for study of re-gional climate at Australian National University, Iowa State University, andthe Fraunhofer Institute (Germany).1.2 AcknowledgmentsArgonne researchers T. Can�eld, K. Dritz, S. Hammond, I. Foster, J.Mogill, and R. Nanjundiah contributed to the design and implementationof MPMM and MM90. NCAR researchers J. Dudhia, G. Grell, and W. Kuoprovided access to and assistance with MM5. Y. Kim at Iowa State University,J. Larson and D. Sitsky at Australian National University, and V. Wayland atCray Research contributed to the code development. The U.S. Air Force andthe U.S. EPA sponsored the MPMM and MM90 projects. Argonne NationalLaboratory (under U.S. Department of Energy contract W-31-109-Eng-38)and the NASA Numerical Aerospace Simulation Facility are gratefully ac-knowledged for grants of machine time and assistance.2 ParallelizationMM5 is parallelized using two-dimensional data domain decomposition.Two- and three-dimensional data arrays containing state variables | wind ve-locity, temperature, moisture, and pressure | as well as diagnostic and inter-4

mediate �elds are partitioned in two dimensions (north/south and east/west)and the resulting subdomains are distributed over processors. Extra mem-ory is allocated at processor subdomain boundaries for ghost points to storeo�-processor operands for �nite di�erencing and horizontal interpolation.RSL automatically decomposes a domain when it is de�ned or, in the caseof a nest, spawned. Each domain is decomposed independently over the sameset of processors; that is, each processor has a portion of every domain inthe simulation. In RSL a grid point is the unit of work that is mappable toprocessors, and subdomains are not constrained to any particular shape. Thisapproach supports load balancing by allowing more precise allocation of workto processors than strategies that constrain subdomains to rectangular shapes.Pointwise decomposition is especially useful if the domains themselves are notrectangular (Figure 1). Domains may be remapped at run time to address loadimbalances.Decomposing domains over processors generates the need for two typesof communication, intra- and interdomain (Figure 2). Intradomain commu-nication is characterized by the size and shape of the computation's stenciland is handled by a stencil exchange in RSL. Stencil exchanges are inherently\nearest neighbor" and therefore well suited to provide good performanceon distributed-memory parallel computers. By precomputing communicationschedules, RSL is able to execute an exchange with just two messages (one ineach direction) per processor pair per stencil exchange, a bene�t on machineswhere the cost of starting a message (latency) is signi�cant (e.g., IBM SP2 andIntel Paragon). In addition, RSL allows many �elds to be communicated in asingle exchange, facilitating hoisting, the combining of exchanges to minimizethe number per time step. Thus, MPMM and MM90 require only twelve ex-changes per time step: four stencil exchanges during the main nonhydrostaticsolver plus two exchanges for each of four minor iterations of a solver for soundwaves.Interdomain communication is necessary to parallelize nest forcing andfeedback in MM5. RSL establishes logical communication streams betweenassociated points in the parent and nest and provides routines for scatter-ing and gathering data over these streams. As with stencil exchanges, RSLprecomputes schedules so that the underlying communication is e�cient.2.1 Memory Scaling and Local IterationModel data structures are shrunken in the north/south and east/westdimensions, using only as much memory as needed on each processor. RSLreturns the minimum local array size whenever a domain is decomposed (whenit is de�ned or when it is remapped for load balancing). The MM90 codeuses this information to dynamically allocate grid arrays using the Fortran905

Fig. 2. Intra- and interdomain communicationallocate statement. 2Shrinking local data structures for memory scaling requires attention toiteration over decomposed dimensions, since the implicit identity between logi-cal and memory indices no longer holds. The logical indices of a grid-point maynot be used to access an array in local memory; nor may local indices be usedto test for proximity with a domain boundary. The pointwise-decompositionstrategy employed by RSL further complicates horizontal iteration. RSL pro-vides programming constructs and run-time information for iterating over thelocal subdomain on each processor and for translating between logical and2 MPMM, the Fortran77 version, uses static memory allocation at compile time.The size information returned by RSL is used as a run-time check.6

recursive subroutine iterate_model(d, start_time, end_time)use domains_moduletype (domainstruct) d ! structure for this domain...do while (d%xtime .ge. start_time .and. d%xtime .lt. end_time)call time_step(d)do kid = 1, maxkidsif (d%active(kid)) thencall force(d, d%child(kid))call iterate_model(d%child(kid), d%xtime-d%dt, d%xtime)call feedback(d, d%child(kid))endifenddoenddoreturnFig. 3. Using Fortran90 recursion for iteration over domain hierarchy. Top-level callis call iterate model(mother, 0., timax).memory indices.2.2 I/OMM5 outputs 13 three-dimensional and 13 two-dimensional �elds eachtime it generates a history write; depending on the con�guration this amountsto between �ve and ten Mbytes every three, six, or twelve model hours. RSLimplements distributed I/O using a single-reader/single-writer strategy: oneprocessor performs Fortran record-blocked I/O and distributes or collects thedata to or from the other processors. This strategy permits MM90 to readand write standard MM5 data sets but is not scalable. Fortunately, output isinfrequent and small compared with the amount of computation. Further, thecost of reading and writing the �le system far exceeds the cost of interprocessorcommunication. Hence, addressing I/O speed on the reader/writer processorby ensuring that the processor reads and writes local disk or some other fast�le system (e.g., PIOFS on the IBM SP2) has proven su�cient (Section 4).Future output requirements or increased input volume for FDDA may requirerevisiting this problem.2.3 Fortran90 in MM90MM90 employs a number of Fortran90 features | abstract data types,pointers, dynamic memory, and recursion | to achieve a more modular,
exi-ble, and run-time con�gurable model suitable for distributed memory parallelcomputers:{ Common data and the myriad include �les have been replaced by a For-tran90 module, containing de�nitions of the domain data type and routines7

Fig. 4. MM90 nest-hierarchy implemented as nodes-and-pointers; each node is adynamically allocated domain structure.for manipulating (e.g., allocating or deallocating) instances of this type.{ Each domain (grid) is an instance of a dynamically allocated derived datatype (structure). New nests can be activated or deactivated at any timeduring the run. Crucial for load balancing, data structures of an activedomain can be resized if remapping causes a change in the distribution ofpoints to processors.{ The hierarchy of nested domains is represented by a tree of domain struc-tures connected by parent and child pointers and rooted at the global do-main pointer variable mother. The top level of MM90 employs recursionto traverse the hierarchy (Figure 3).{ The model is 100 percent run-time con�gurable. Whereas changing nest-ing and physics options in the MM5 code often requires recompilation, theMM90 code is con�gured entirely through the namelist.The principal object in MM90 is the domains module. It contains thede�nition of a domain structure (a Fortran90 derived data type) and a pointerto the root of a tree of domain structures that represent the hierarchy ofnesting (Figure 4). A domain structure (Figure 5) contains domain-speci�cscalar data and all two- and three-dimensional state arrays for the domain,de�ned as \deferred-shape" arrays. These have no memory until explicitlyallocated. This approach allows run-time allocation of memory in the size andshape necessary for the local partition initially and during remapping.3 Dynamic Load BalancingLoad balancing in MM90 is implemented by identifying the key computa-tional segments of the code and then inserting instrumentation that measuresthe cost of computing each column in those segments. The segments are8

(i) Planetary boundary layer and radiation;(ii) Calculation of horizontal di�usion coe�cients;(iii) Horizontal and vertical advection. di�usion, cumulus, explicit moisture ,convective adjustment, boundary nudging;(iv) Split semi-implicit solver for sound waves; and(v) Interpolation for nest boundary forcing.Several sections known to be lightweight were omitted or combined intothe ones shown.The number of milliseconds to compute column i; j in a segment is ac-cumulated into the corresponding entry of a two-dimensional array of timersfor that segment. Periodically, a new mapping �new is computed, and thee�ciency of the new mapping is compared with the old mapping. The newmapping is adopted if it improves e�ciency by more than ".PTP maxp�new(p; T) > PTP maxp�old(p; T) + �T denotes the array of timers with an entry for each point in the domain,and PT is the total time for all points in the domain. �(p; T) denotes totaltime for the columns of T allocated to processor p under mapping �. P is thenumber of processors. Performance of the model with dynamic load balancingis discussed in Section 4.4 PerformanceConcern for model performance falls into two categories: \raw" perfor-mance and scaling. Raw performance, or time-to-solution is usually (and jus-ti�ably) the bottom line for users. Scaling is important as a measure of machineutilization and provides the ability to increase capabilities by simply addingprocessors. Benchmark results for MM90 were gathered on the IBM SP2 at theNumerical Aerospace Simulation (NAS) facility at NASA Ames laboratory. 33 The NAS SP2 is composed of 160 RS/6000-590 processing nodes on ahigh-speed switch for message passing. Additional information is available athttp://lovelace.nas.nasa.gov/Parallel/ SP2.type domainstructinteger il,jl,jlinteger stencil_a, stencil_b,...real, pointer :: psa(:,:),tga(:,:),... ! 2d arraysreal, pointer :: ua(:,:,:),va(:,:,:),... ! 3d arraystype (domainstruct), pointer : parent, child(:)endtype domainstructtype (domainstruct), target :: mother ! rootFig. 5. Fortran 90 code de�ning a skeletal domain structure9

0

1000

2000

3000

4000

5000

6000

4 16 32 64 128

M
fl

op
/s

ec
on

d

Processors

Parallel MM5 Performance (No Nests)

Ideal
MM90

MM90 with I/O

0

500

1000

1500

2000

2500

3000

4 16 32 64

M
fl

op
/s

ec
on

d

Processors

Parallel MM5 Performance (Doubly Nested)

Ideal
MM90-LB

MM90-LB w/ I/O
MM90-NOLB, w/ I/O

Fig. 6. Performance without and with nestingAll runs were conducted with single (32-bit)
oating-point precision.Figure 6 shows model performance in M
op/sec for two scenarios, onewithout and one with nesting.The �rst scenario is a single 100-km resolution domain with grid dimen-sions 61 by 61 horizontally and 23 levels. The run is nonhydrostatic withfull physics including explicit moisture with mixed-phase ice, cumulus (Grell),radiation (Dudhia), PBL (Blackadar), and an upper radiative boundary con-dition. The relatively coarse resolution would not usually warrant nonhydro-static numerics. However, for comparison with higher-resolution nested runs(and because the hydrostatic solver is not parallelized in MM90), all runswere done nonhydrostatically. The scenario, centered over the Korean penin-sula is from July 1995, during Typhoon Faye. Lateral boundary conditionsare read every 12 hours; output data is generated every 6 simulation hours.The
oating-point rates are based on an estimated 716 M
op/time step. Themodel runs at 47 M
op/sec on 1 processor and 2.9 G
op/sec on 128 proces-10

Processors Computation Stencil exch. Forcing Feedback I/O4 84.7 3.0 9.5 1.7 1.116 61.8 7.6 27.4 2.4 .932 56.4 8.8 30.2 3.0 1.564 51.8 9.8 32.1 3.4 3.8Fig. 7. Cost as a percentage of total run time in doubly nested runssors, including time spent performing I/O. A 36-hour forecast (5-minute timesteps) completes in 1 hour and 50 minutes on 1 processor and in 110 secondson 128 processors I/O comprises 7 percent of total run time on 32 processors,14 percent on 64 processors, and 25 percent on 128 processors. The apparentlyhigh cost for I/O is explained by the fact that the total run time for a 36 hourforecast is under 2 minutes, indicating a small computational problem to beginwith. E�ciency is 70 percent on 32 processors, 62 percent on 64 processors,and 48 percent on 128 processors. Since the e�ect of dynamic load balancingon the single-domain runs is nominal, only the non-load balancing times areshown.The second scenario adds two nests to the original scenario: a 33-km nestwithin the mother domain and an 11-km nest within the 33-km nest. Thenests have the same grid dimensions as the mother. Cost per �ve-minute timestep is 8054 M
op. The model runs at 176 M
op/sec on 4 processors (thescenario is too large to run on a single processor) and at 1592 M
op/sec on 64processors; results from a 128-node run were not available. Although there arethirteen times as many iterations per �ve-minute time step | one at 100-km,three at 33-km, and nine at 11-km | the number of
oating point operationsis only 11.25 times greater. This is because radiation calculations are doneat a �xed interval of thirty minutes, regardless of resolution; therefore the11

ratio of non-radiation steps to costly radiation steps increases as resolutionbecomes more �ne. Results from a 128-node run were not available. On theconsiderably larger doubly nested problem, I/O comprises only 1.6 percent oftotal run time on 32 processors and 4 percent on 64 processors. E�ciency is74 percent on 16 processors, 64 percent on 32 processors, and 57 percent on64 processors. A 36-hour forecast completes in 5.5 hours on 4 processors andin 36 minutes on 64 processors, including I/O.Figure 7 shows a detailed breakdown of the component costs of the doublynested scenario. Computation scales well, and the communication associatedwith stencil exchanges also stays under 10 percent; I/O is also not a majorconcern. The principal source of ine�ciency is nest forcing. The ine�ciencyis not communication, however. Nest feedback, which communicates consid-erably more data than forcing | data from the nest interior is fed back whileonly the nest boundaries are forced | has only a modest share of the cost.Rather, the problem is a costly and imbalanced interpolation computationduring forcing that involves the parent-domain points over the nest bound-aries. We are addressing this imbalance by distributing the interpolation workmore evenly over processors without migrating the points themselves, as isdone to address other forms of load imbalance.Dynamic load balancing in MM90 can handle load imbalances that resultfrom poor guesses at initial decompositions and load distributions that changeover time, as a function of either the state of the model (di�erent paths beingexecuted in model physics depending on the state of the atmosphere) or thestate of the computing environment. Dynamic load balancing signi�cantlyimproved the doubly nested NAS runs (Figure 6). E�ciency from 4 through64 processors was 57 percent with load balancing but only 48 percent without.Nevertheless, in its current con�guration, MM90 does not exhibit a high degreeof physics-induced dynamic load imbalance. For this paper, a dynamic loadimbalance is simulated within an eight-hour single-domain simulation using32 processors of the Argonne SP2 to test the model's ability to rebalance theload automatically (Figure 8).For the �rst 2.5 hours (Period A), the model runs normally. The maxi-mum processor time is 15.0 seconds and the mean is 14.1 seconds, giving ane�ciency of 94 percent (Tmean=Tmax). At hour 2.5, a two-fold increase in loadis induced within a centered circle, radius 1/5 the width of the grid. Thisincreases maximum processor time to 35.1 seconds; the mean is 17.4 seconds(Period B). Computational e�ciency drops to 50 percent. MM90 detects andcorrects the imbalance at hour 3.5 by moving work o� the processors in thecenter of the domain (Period C). As a result, e�ciency rebounds: the maxi-mum processor time is 19.6 seconds, and the mean is 18.9 seconds. E�ciencyis restored to 96 percent. At hour 4.5, the induced load �nishes, and the distri-bution again becomes imbalanced because the interior cells are now too lightlyloaded (Period D). E�ciency drops to 78 percent. The remapping step at hour5.5 corrects this and restores e�ciency to 95 percent (Period E).Full rebalancing (Tmap+Tmove) costs 12 seconds. Calculating a remapping12

Fig. 8. Correcting an arti�cially induced load imbalance in an 8-hour simulation on32 processors. The top �gure is time per time step, in milliseconds; each tick on onthe x-axis is an MM90 time step. The two lower �gures show the decompositionand resulting processor loads for two of the periods in the run (B and C). Lightergrey denotes greater work, but the shading scales between the two periods aredi�erent. Workloads between processors in Period C are actually closer togetherthan in Period B.but retaining the old one (Tmap only) costs 2.5 seconds. Continued work willfocus on improving the e�ciency of the mapping mechanisms and re�ning theperformance model for dynamic load balancing in MM90.5 Source TranslationMM90 provides both an excellent testbed for parallel computing researchand a production-quality weather model suitable for meteorological research13

and operational weather forecasting. However, it is a separate code from theo�cial MM5 and has not kept up to date with the o�cial version. Essentially�nished for the Air Force at the end of 1995, MM90 was soon a version behindthe NCAR model, with the release of MM5v2 in 1996.A number of solutions have been proposed to address the problem of main-taining a model a diverse computer architectures. Alternatives include condi-tional compilation, parallelizing data-parallel compilers, the use of directive-driven preprocessors, writing and maintaining separate versions, or acceptingsuboptimal performance (or no port at all) for other architectures.Source translation based on lexical, syntactic, and semantic analysis andtransformation of a code appears a most promising strategy. Source transla-tion can automatically detect loops over decomposed dimensions and generatethe proper looping expression for the architecture, thereby facilitating localiteration for distributed memory, multi-tasking for shared-memory, and re-structuring for cache-blocking or vectorization. Source translation can alsoautomatically and interprocedurally identify data dependencies and generatee�cient communication. With run-time system support (e.g., RSL), sourcetranslation can easily address irregular domains and domain decompositionsfor load balancing. Source translation can target di�erent underlying run-time system libraries, as needed for a particular architecture or installation.A project involving model developers at NCAR and software experts AppliedParallel Research Inc. is underway to develop this approach for MM5 [7].6 ConclusionsMM90 is an e�cient, scalable, and largely functionally equivalent imple-mentation of the Penn State/NCARMM5 model. It is useful both as a testbedfor parallel computing research and for operational weather forecasting andatmospheric research. It supports nesting and dynamic load balancing. It em-ploys modules, derived data types, dynamic memory allocation, pointers, andrecursion in Fortran90 to produce a more modular,
exible, extensible, andrun-time con�gurable expression of the model. Many modi�cations for paral-lelism, such as message passing and data domain partitioning over processors,are handled transparently using RSL. The �nal step, source translation, willcomplete the task of hiding remaining parallel artifacts relating to iterationover decomposed dimensions and boundary computations.References[1] R. Anthes and T. T. Warner, Develpment of hydrodynamic models suitablefor air pollution and other mesometeorological studies, Mon. Wea. Rev., 106(1978), pp. 1045{1078.[2] I. Foster and J. Michalakes, MPMM: A Massively Parallel MesoscaleModel, in Parallel Supercomputing in Atmospheric Science, G.-R. Ho�mann and14

T. Kauranne, eds., World Scienti�c, River Edge, New Jersey, 1993, pp. 354{363.[3]G. A. Grell, J. Dudhia, and D. R. Stauffer, A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), Tech. Rep. NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder, Colorado, June1994.[4] R. Hempel and H. Ritzdorf, The GMD Communications Library for Grid-oriented Problems, Tech. Rep. GMD-0589, German National Research Center forInformation Technology, 1991.[5] S. R. Kohn and S. B. Baden, A Parallel Software Infrastructure for StructuredAdaptive Mesh Methods, in Proceedings of Supercomputing '95, IEEE ComputerSociety Press, 1996.[6] J. Michalakes, RSL: A Parallel Runtime System Library for Regular GridFinite Di�erence Models Using Multiple Nests, Tech. Rep. ANL/MCS-TM-197,Mathematics and Computer Science Division, Argonne National Laboratory,Argonne, Illinois, December 1994.[7] , FLIC: A Translator for Same-source Parallel Implementation of RegularGrid Applications, Tech. Rep. ANL/MCS-TM-223, Mathematics and ComputerScience Division, Argonne National Laboratory, Argonne, Illinois, March 1997.[8] J. Michalakes, T. Canfield, R. Nanjundiah, S. Hammond, andG. Grell, Parallel Implementation, Validation, and Performance of MM5, inComing of Age: Proceedings of the Sixth ECMWF Workshop on the Use ofParallel Procesors in Meteorology, World Scienti�c, River Edge, New Jersey,1995, pp. 266{276.[9] B. Rodriguez, L. Hart, and T. Henderson, A Library for the PortableParallelization of Operational Weather Forecast Models, in Coming of Age:Proceedings of the Sixth ECMWF Workshop on the Use of Parallel Processorsin Meteorology, World Scienti�c, River Edge, New Jersey, 1995, pp. 148{161.
15

